
Lattes Université pour Tous Mardi 05 décembre 2017

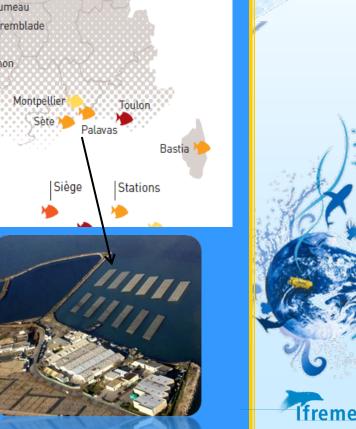
Les micro- algues alliées bienveillantes de l'humanité.

Palavas les flots.

Cyrille Przybyla

- « Bio-ressources Aquatiques » Université de Montpellier.
- « Mécanique céleste » Observatoire de Paris.

Ifremer



Etablissement à caractère industriel et commercial (EPIC)

Tutelles conjointes : ministères de

- l'enseignement et de la recherche
- l'environnement, de l'énergie, et de la mer.

1500 salariés (CNRS = 32 000 – INRA = 8200)

Ifremer

Les missions de l'Ifremer

Essentiellement sur le territoire français

Exploration

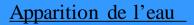
Pêches

Ressources

Aquaculture

Aquaculture poissons

Formation du Soleil


-4,6 milliards d'années

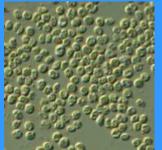
Formation de la Terre

-4,5 milliards d'années. à -3.5 milliards d'années.

Hypothèse:

- Pour moitié par une pluie de météorites Chondrites (les comètes contiennent +50% d'eau)
- L'autre moitié de l'eau terrestre aurait pour origine un dégazage du manteau, libérant un complexe hydrogène/oxygène.

Apparition d'organismes aquatique


environ - 3,4 milliards d'années

Les stromatolites: colonies bactériennes utilisant les carbonates de l'eau en produisant de l'oxygène.

environ - 2,8 milliards d'années

Des cyanobactéries utilisant de dioxyde de carbone et la lumière et rejettent du dioxygène.

environ - 2,0 milliards d'années

Micro algues marines proches de leurs formes actuelles

Apparition des macro algues


Une vie animale uniquement marine environ - 1,8 milliards d'années ?????

Apparition de la végétation terrestre

- 475 millions d'année à

- 290 – 243 millions d'années (Dinosaures, mammifères)

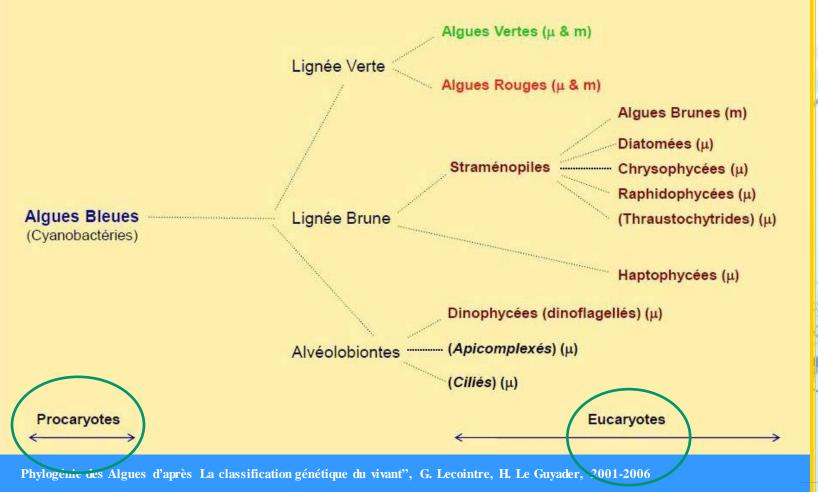
65 millions d'années
instinctions massives
dinosaures , ammonites
+ 75 % des espèces.

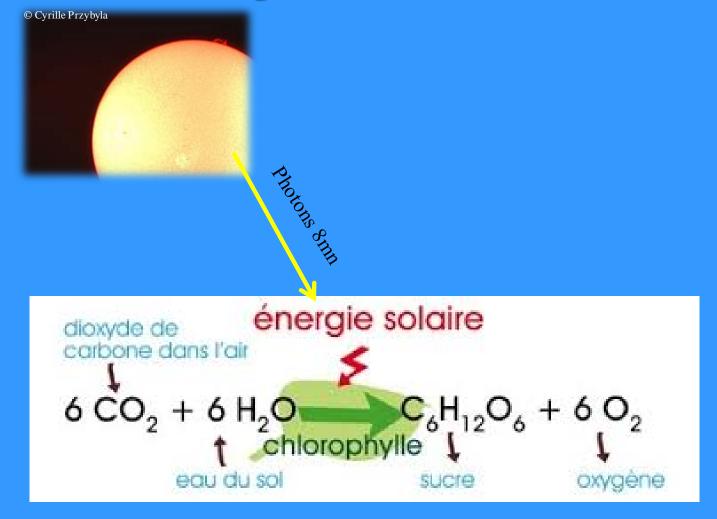
Apparition des hominidés

- 7 millions d'années

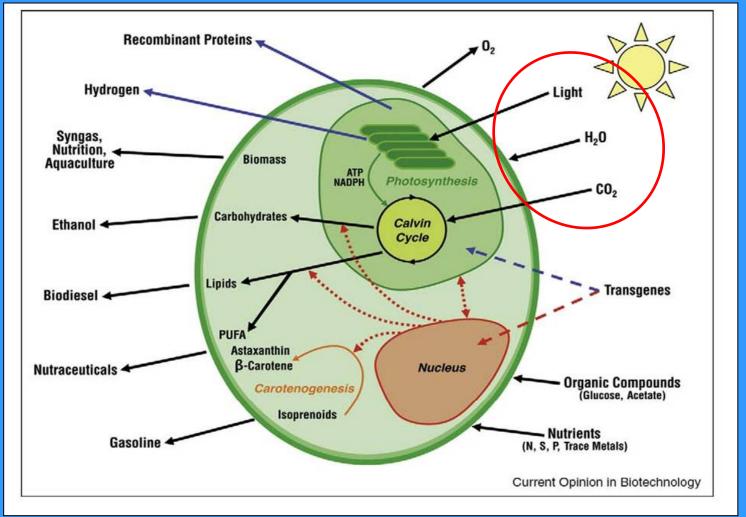
Apparition de l'hommes modernes

- 300.000 ans





Grandes familles d'algues à classer.


Comment ça marche?

Comment ça marche? Les intrants nécessaire à la vie d'une algue

(division toute les 20h à 24 h).

Les micro-algues aujourd'hui.

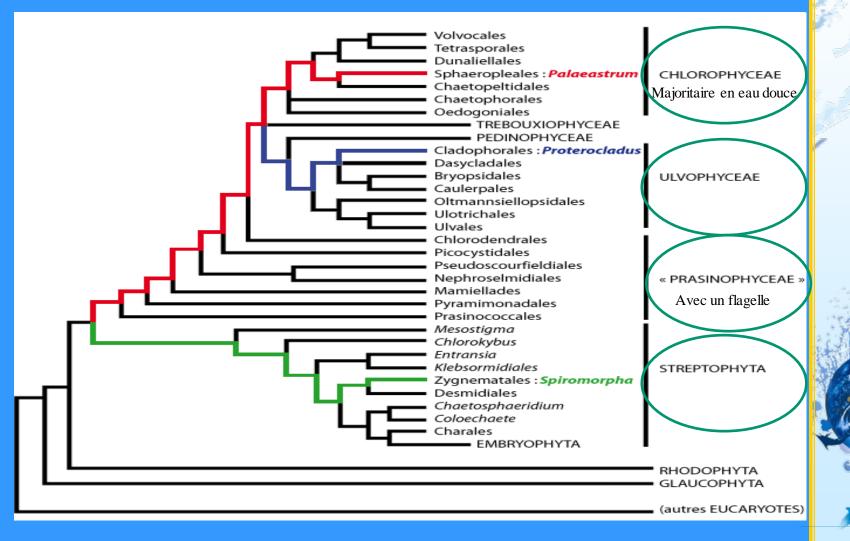
Culture en monosouche Cosmétique

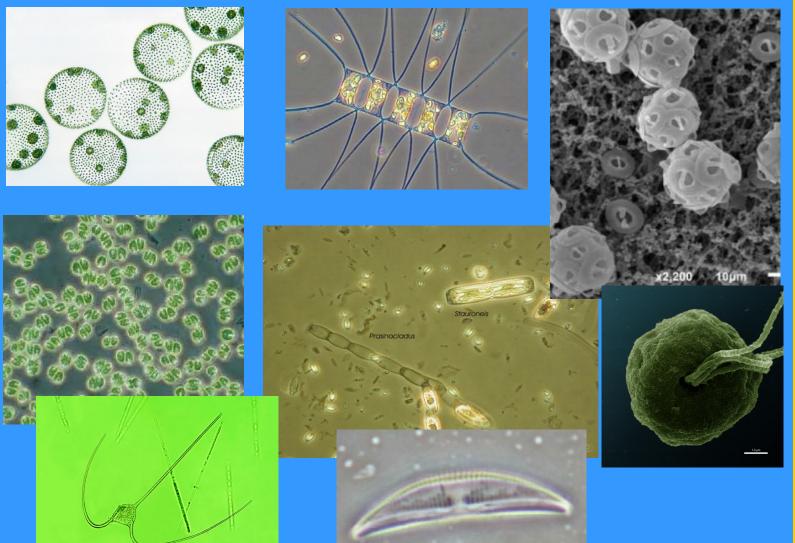
Les micro-algues aujourd'hui.

Culture en monosouche

Pharmacie / médical

Activités biologiques	Actifs
Antibiotiques	Composés aromatiques, aliphatiques phénoliques, terpénes polysaccharides, oligosaccharides
Anti-coagulant/Anti-thrombotique	Oligosaccharides sulfatés (fucanes)
Anti-inflammatoire	Polysaccharides, oligosaccharides
Anti-tumorale	Polysaccharides, oligosaccharides
Anti-ulcère	Polysaccharides, oligosaccharides (alginate, carraghénanes)
Anti viral (Herpès, HIV)	Polysaccharides (fucanes, carraghénanes, galactomannanes, agaranes)
Hypocholestérémiante	lode, polysaccharides
Traitement contre le goitre	lode
Vermifuge	Acide kaïnique


Sources: Les ressources marines de la Polynésie française: applications en matière de bi otechnologie


Une large diversité...

Algues vertes

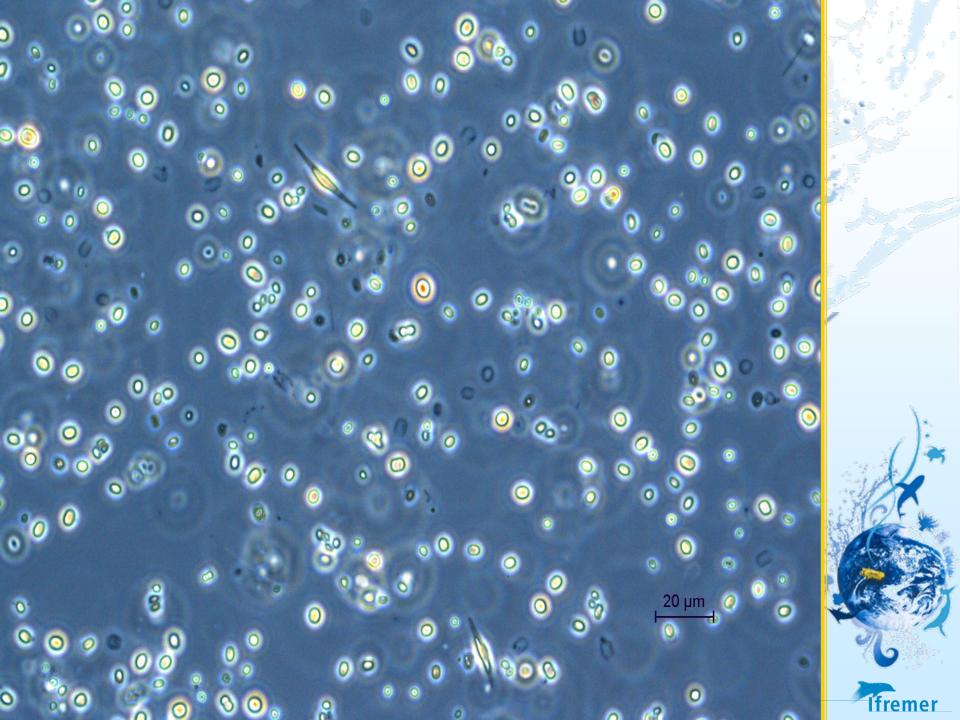
... un règne riche en formes et en couleurs.

Un concept nouveau: La polyculture de miro-algues

Un volume d'eau en bassin

Nutriments liquides (Azote, phosphore)

Nutriments gazeux (CO2)


Une polyculture naturelle de micro algues marines

Notion de prairie

Une prairie marine ... mais avec de fortes dominances.

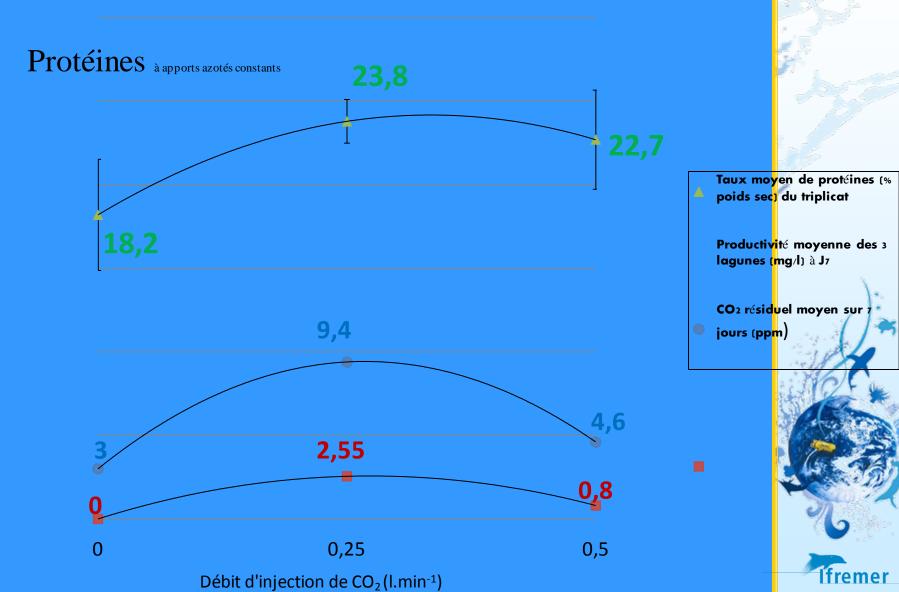
Exemple ponctuel de diversité

66 %

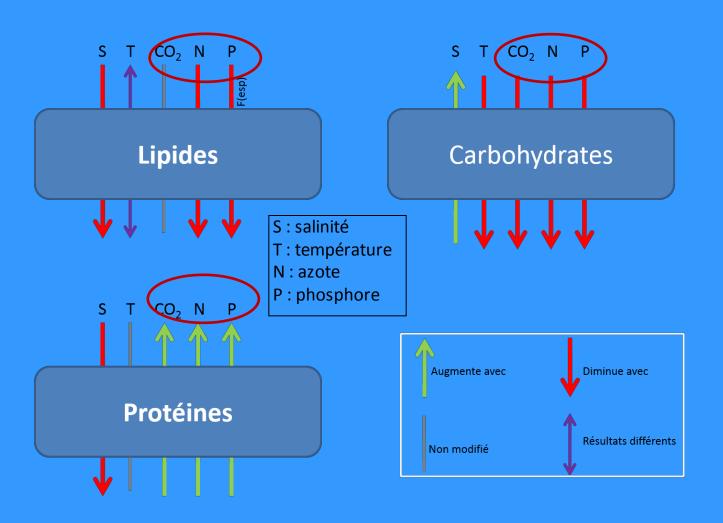
21 %

7 %

6 %


Les conditions environnementales peuvent elles orienter: Les familles ?

La composition ? => Orientation métabolique de prairies



Orientation métabolique prairies

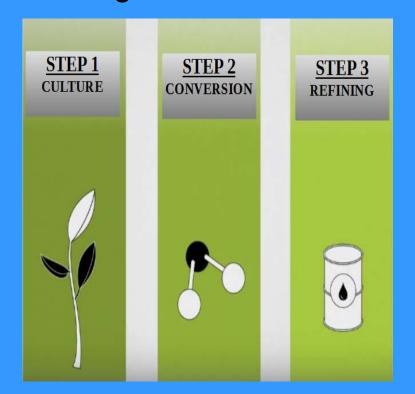
Evolution du taux moyen en protéines et de la productivité en fonction de la concentration résiduelle moyenne de CO₂

Orientation métabolique prairies

Les projets de recherches

PARTIE 1 La bio-remédiation gazeuse

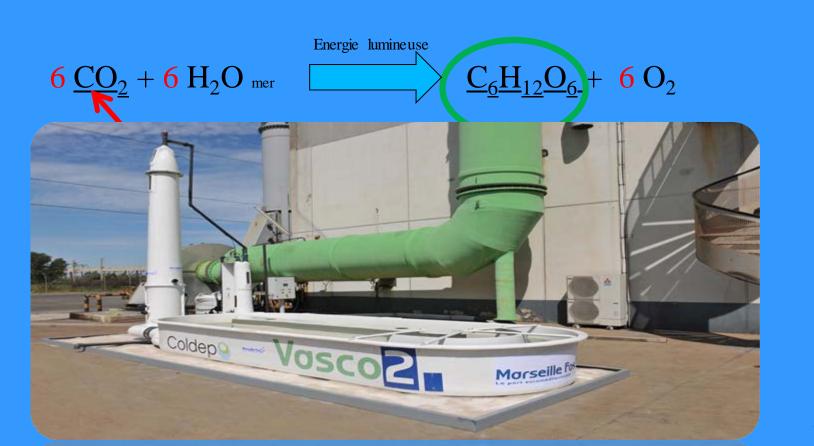
« Les micro algues au secours de la qualité de l'air »



Vasco2 : programme de recherche avec démonstarteurs pre-industriels (10m² and 160m²) en environnement réel en utilisant la chimie verte des micro algues.

Objectif:

La bio-remediation du CO₂ en utilisant une culture naturelle de micro algues marines en milieu ouvert.



Des micro-algues ... et des hommes émetteurs de CO₂

Le projet Vasco: Bioremédiation du CO2 industriel

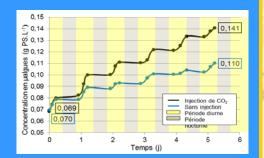
Equation de la photosynthèse :

Des micro-algues ... et des hommes émetteurs de CO₂

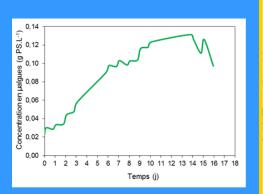
Le principe de la bioremédiation

Pas de sélection de souche, mais une expression naturelle d'un consortium de µalgues.

Le point clé


Savoir concentrer et récolter ces micro cellules (0,2µm à 20 µm)

Les cycles de vie de la culture


Développement du consortium d'algues.

Leur respiration nocturne.

Déterminé les phases de cycle de vie du consortium de µalgues.

Les bénéfices d'une culture d'algues marines en milieu ouvert.

Un système capteur de CO₂.

• 1 hectare de culture à injection de CO₂ capterait 10 à 15 fois plus qu' une forêt tropicale (estimation à confirmer en système expérimental)

Un système producteur d'oxygène.

- 1 hectare de forêt = 10 à 15 tonnes d'oxygène
- 1 hectare de lagune biormédiation 150 à 180 tonnes d'oxygènes dissous
- (à confirmer sur de plus grandes surfaces)

Un système à faible coût de production sur plusieurs hectares.

- •Pas de nécessité d'axenie (sans bactérie)
- •Limitation des coûts d'investissements/ha (même système que les marais salants)
- •Pas de contrôle de la température

Un système adapté à l'environnement.

• Développement d'algues autochtones dans des conditions environnementales locales.

« Let's the nature do the job »

Première estimation en 2011.

(ordres de grandeurs)

1 tonne/an de CO₂ bioremédié correspond à:

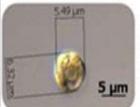
59 m² de culture

275 Kg de micro algues sèches.

Apport 14 Kg Azote et environ 800 g de Phosphore.

1 hectare avec injection de CO₂ produit 46 tonnes d'algues sèches /an

* Avril Mai 2012, Hauteur d'eau de 50 cm.



Qui est là?

Chlorella sp.

Phylum: Chlorophyta Classe: Chlorophyceae Ordre: Chloroccocales Famille: Oocystaceae

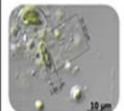
Chlamydomonas sp. ou Dunaliella sp.

Phylum : Chlorophyta Classe : Chlorophyceae Ordre : Volvocales

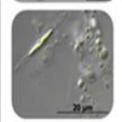
Isochrysis sp.

Phylum: Haptophyta Classe: Coccolithophyceae Ordre: Isochrysidales

Famille : Isochrysidaceae

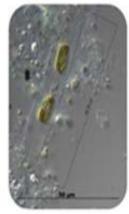

Chlorella stigmatophora

Phylum: Chlorophyta Classe: Chlorophyceae Ordre: Chloroccocales Famille: Oocystaceae


Cylindrotheca closterium

Phylum: Ochrophyta Classe: Bacillariophyceae Ordre: Bacillariales Famille: Bacillariaceae

Pinnularia sp.

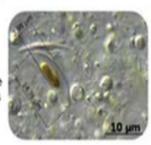

Phylum : Ochrophyta Classe : Bacillariophyceae Ordre : Naviculales Famille : Pinnulariaceae

Nitzchia sp.

Phylum : Ochrophyta Classe : Bacillariophyceae Ordre : Bacillariales

Famille: Bacillariaceae

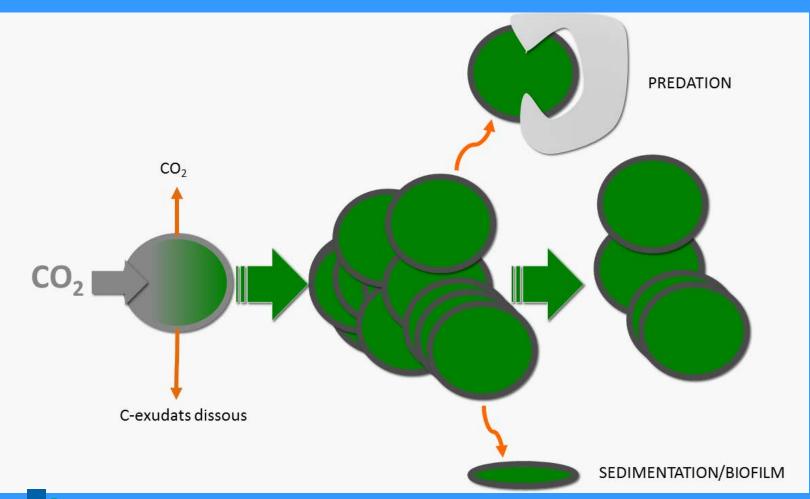
Synedra sp.


Phylum: Ochrophyta Classe: Bacillariophyceae Ordre: Fragilariales

Famille: Fragilariaceae

Phylum : Ochrophyta Classe : Bacillariophyceae

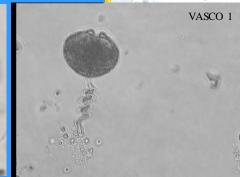
Ordre: Thalassiophysales Famille: Catenulaceae



Analyse de la culture

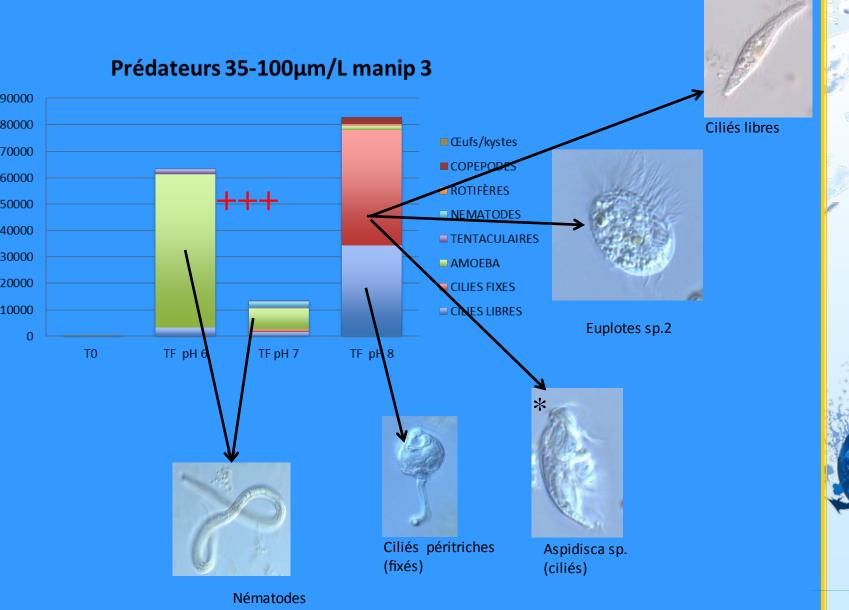
Analyse de la récolte

Vosco 21 Où va le carbone ?


Bilan en C = Evaluation des pertes en C

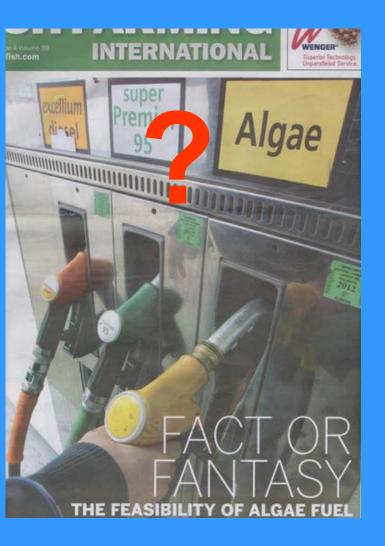
Ciliés péritriches

Du zooplancton associé aux cultures.



Résultats: 28 Juin au 25 Juillet 2016 (J27)

Petits prédateurs < 100µm


Quel est le meilleur système de culture en milieu ouvert?

Des micro-algues ... des hommes

Autres perspectives de valorisations.

Culture	Production d'huile (L/ha)
Mais	172
Soja	446
Jatropha	1892
Huile de palme	5950
Microalgues	20,000 - 60,000

Adapté de Chisti et al. 2007

- Triglycérides d'intérêt dans une culture type bioremédiation à ciel ouvert ?
 - Possibilités d'orientation
 - •biochimique de la culture ???.
- Encore quelques années de recherches supplémentaires.

Les projets de recherches

PARTIE 2 La bio-remédiation liquide

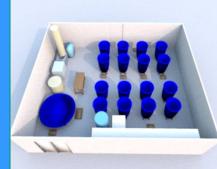
« Les micro algues au secours de la qualité de l'eau»

Des hommes... et des poissons.

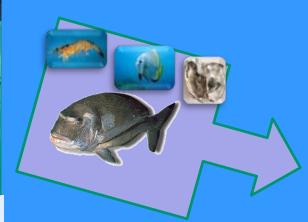
Activité de l'Ifremer Palavas

Biologie des Organismes Marins Exploités.

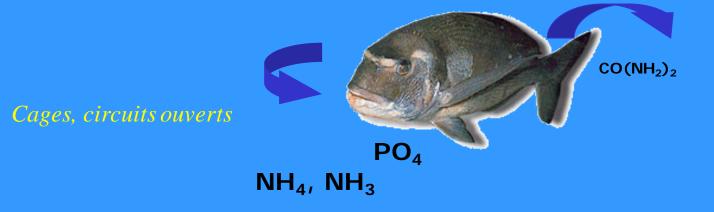
Systèmes de production.


Des hommes... et des poissons

Un système de production aquatique



Aliment



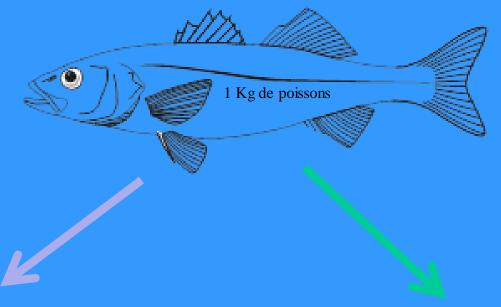
Protéines, lipides, ω3, ... (€)

Des hommes... et des poissons

Production de nutriments par le métabolisme de l'organisme élevé.

Bactéries du filtre biologique

Des poissons...


Minimiser les rejets cataboliques par la qualité de l'aliment.

Protéine: 46%

Lipides: 14 %

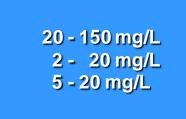
Protéine haute digestibilité: 45%

Lipides: 20 %

120 g d'azote 25 g de Phosphore

80 g d'azote 8 g de Phosphore

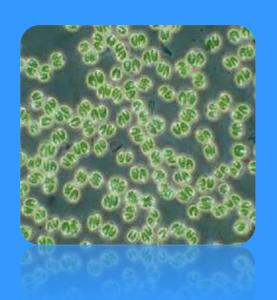
Des poissons...et des micro algues


« Traitement des effluents piscicoles marins par lagunage à haut rendement algal »

Charge: 60 to 140 Kg/m³

 $N(NO_3)$

P(PO₄) 2 - 20 mg/L MES 5 - 20 mg/L



© C.Przybyla-Ifremer

Réutilisation de l'Eau

Des micro algues ... et des poissons

La réutilisation de l'eau de culture des micro algues est-elle compatible avec la production de poissons?

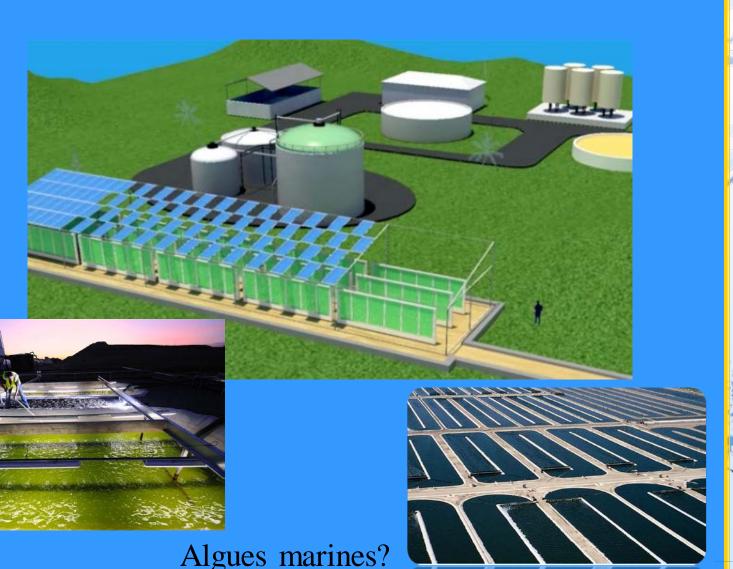
<u>REPONSE</u> :

Oui

Aquat. Living Resour.
© EDP Sciences, IFREMER, IRD 2010
DOI: 10.1051/alr/2010013
www.alr-journal.org

Aquatic Living Resources

Fish growth and health aspects of sea bass (*Dicentrarchus labrax*) reared in standard vs. high rate algal pond recirculation systems


Ivona Mladineo^{1,a}, Ivana Bočina², Cyrille Przybyla³, Julie Fievet³ and Jean-Paul Blancheton³

Absence d'inhibition de croissance du poisson. Absence de parasistose sur le poisson. Maintien de l'immunité du poisson.

Pouvons nous faire de même pour les stations d'épuration?

Les projets de recherches

PARTIE 3

- Une source alternative de nutrition.
- « Les micro algues nourricière de l'humanité de demain? »

Des hommes...

7 095 000 000 humains en 2013

Bureau 2011/JB BOURON, www.geotheque.org, 2013

Chine 1,3 milliard

Inde 1,2 milliard

Union Européenne
505 millions

Rate-Union

Articles - Union

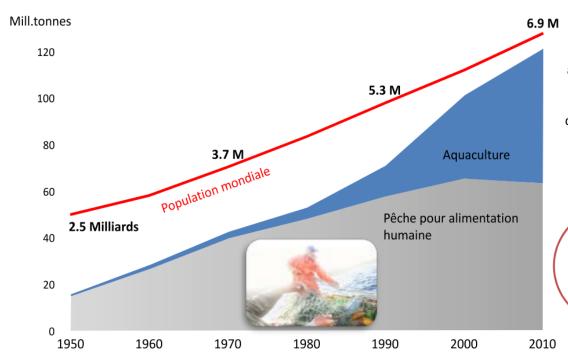
Rate-Union

Articles - Union

Rate-Union

R

Les sources alimentaires actuelles

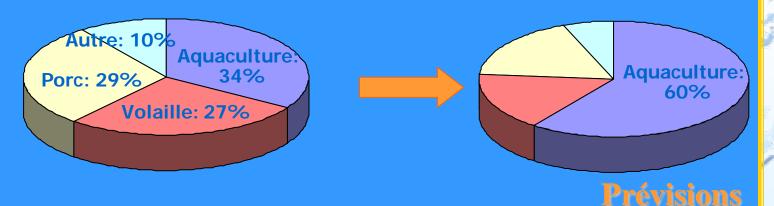


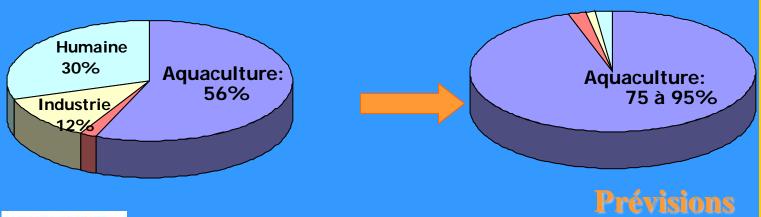
Des hommes ... et des poissons.

LA REVOLUTION BLEUE

annuelle globale de 8.7 % par an au cours des 30 dernières années

C'est le secteur agricole qui connait la croissance la plus rapide

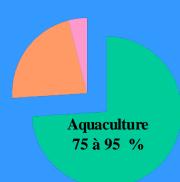

Source: FishStatJ – FAO Fishery and Aquaculture Global Statistics 2012

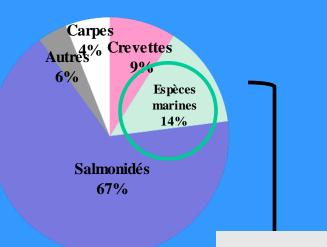


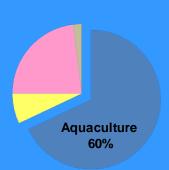
Pourquoi remplacer les huiles et farines de poissons par de nouvelles sources ?

Farines de poissons: production mondiale stable = entre 5 et 6MT

Huiles de poissons: production mondiale stable = environ 1 MT






Pourquoi remplacer les huiles et farines de poissons par de nouvelles sources?

Huiles lipidiques

Farines proteiques

Pourquoi remplacer les huiles et farines de poissons par de nouvelles sources ?

Evolution des prix en Euro FOB Pérou (Source: Hammersmith)

Pourquoi remplacer les huiles et farines de poissons par de nouvelles sources?

6 PLANÈTE

Le Monde

MERCREDI 10 DÉCEMBRE 2014

Pérou: la disparition des anchois déroute les experts

Premier producteur de farine de poisson au monde, Lima s'inquiète du réchauffement des océans

LIMA - correspondance

n vent d'inquiétude souffle sur les milliers de bateaux de pêche qui peuplent le littoral péruvien. Premier producteur de farine de poisson au monde, le Pérou n'a pas encore autorisé de seconde saison de pêche d'anchois. matière première pour cette farine destinée à l'aquaculture et à l'aviculture. « Il n'y a pas assez d'anchois dans les eaux péruviennes en ce moment », a reconnu le ministre de la production, Piero Ghezzi, en novembre. La biomasse des anchois, généralement évaluée à to millions de tonnes, a chuté à 1,45 million, selon l'Institut de la mer du Pérou (Imarpe), qui recommande, dans son dernier rapport publié vendredi 5 décembre, que le gouvernement interdise la pêche à

LES CHIFFRES

6 %

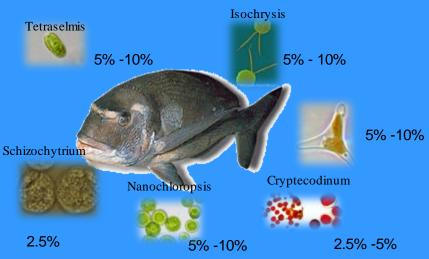
des captures mondiales de poissons

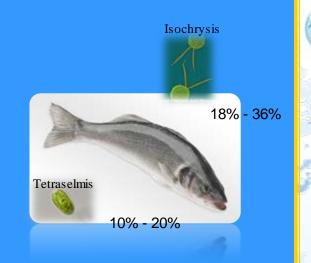
Le Pérou était le quatrième plus gros pays pêcheur en 2012.

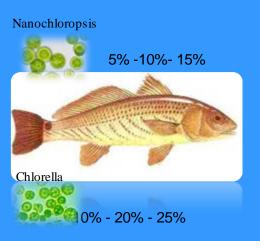
30 %

de production mondiale de farine de poisson

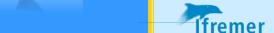
Ce secteur a rapporté au Pérou 1,4 milliard d'euros en 2012 à l'exportation. La tonne de farine de poisson a atteint le pic de 1 900 euros en novembre 2014, conséquence du manque d'anchois dans l'océan, soit une augmentation de 66 % en un an.

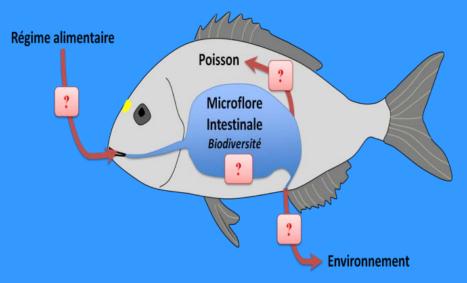



Pourquoi les algues marines?



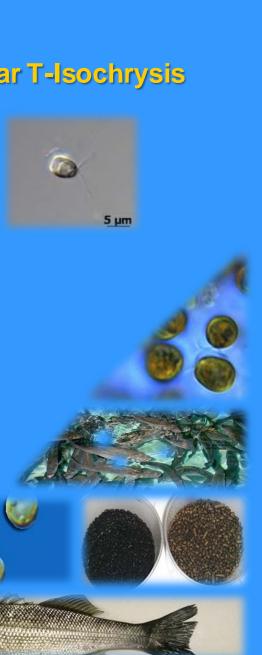
Niveaux de substitution publiés algues marines / poissons marins





Protoil

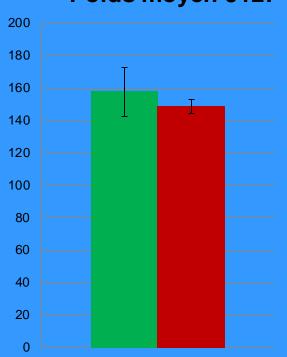
Remplacement 20% protéines et lipides par T-Isochrysis

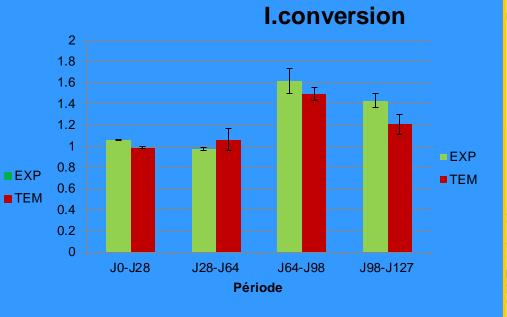

Culture avec une seule algue

Les performances de croissance du Bar

La population bactérienne du TD?

- L'activité enzymatique (amylase,lipase)
- Triglycerides, cholesterol, glycerol,




Protoil

Remplacement 20% Proteines et Lipides par T-Isochrysis

Les performances de croissance du bar

Poids moyen J127

Vert = Avec 20% Isochrysis

Rouge = 100 % Huile et farine de poissons

Quelle valorisation de la biomasse algale en milieu ouvert?

En milieu ouvert, la valeur biochimique des prairies d'algues proches de certaines céréales.

%	Protéines	Lipides
Culture en consortium (multi algues)	11	7
Schizochytrium (algue)	6,5	2,5
Chlorella PBR (algue)	48	3,5
Dunaliella.s (algue)	9	7
Spiruline (algue)	54	8
Maïs (céréales)	11	11
Soja (céréales)	37	20
Alimentation Volaille	15 à 27	2 à 4
Alimentation poissons	20 à 50	6 à 25
Alimentation bovins	12 à 25	10 à20

MARINALGAE4Aqua

Aliment à base de micro-algues marines en consortium naturel ciel ouvert + macro algues marines.

			- W.A C.
No Acronym	Partner	Contact	Country
1 CIIMAR	CIIMAR - Interdisciplinary Centre of Marine and Environmental Research	Luisa Valente	Portugal
2 UiN	University of Nordland	Kiron Viswanath	Norw ay
3 CU	Cukurova University	Tufan Eroldogan	Turkey
4 PLAGTO N	PLAGTON SA	Dimitris Bokas	Greece
5 UniUD	University of Udine	Francesca Tulli	Italy
6 DTU Food	Technical University of Denmark	Flemming Jessen	Denmark
7 FEAP	Federation of European Aquaculture Producers	Courtney Hough	France
8 CFRC	Central Fisheries Research Institute	Ilhan Aydin	Turkey
9 UPATRA S	University of Patras	George Aggelis	Greece
10 Algaplus	ALGAplus, Produção e comercialização de algas e seus derivados Lda	Helena Abreu	Portugal
11 IFREMER	French Research Institute for Exploitation of the Sea	Cyrille PRZYBYLA	France
12 CEVA	Centre d'Etude et de Valorisation des Algues	Ronan Pierre	France

Bar

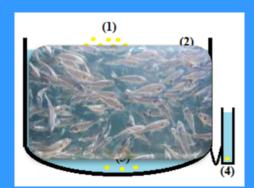
Saumon

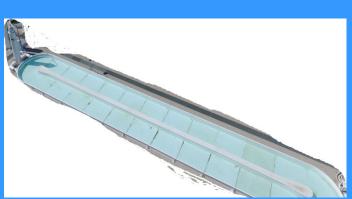
MARINALGAE4Acjua

Site de Palavas les flots

 $\begin{array}{l} 160_{\text{ m2}} \\ 70_{\text{ m3}} \\ \text{Natural consortium} \end{array}$

Rate of **nutrient removing**


Algae cultivation

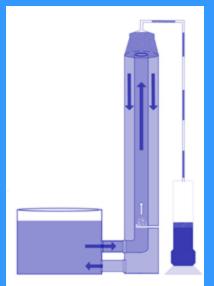

Effluent profile:

650 gN/day 900 mgP/day N/P Ratio = 7 to 9

200 Sea bass (100g)

Day 10

Day 37



Algae cultivation

Concentration

Centrifugation

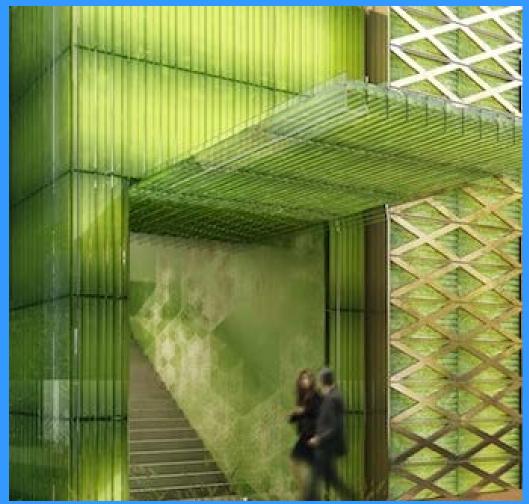
Freeze dried

Stock

Premiers résultats

... en 2018

Les projets de prospectives


PARTIE 3 Un urbanisme biologique.

« Les micro algues dans nos maisons de demain? »

Bio - architecture

Traitement des rejets domestiques urbains

Une vision d'artiste d'un bâtiment entièrement équipé du dispositif d'Ennesys, photobioréacteurs visibles © Ennesys

Bio - architecture

Projet: Hong kong tower (Chine)

Façade design (France)

Les projets de recherches

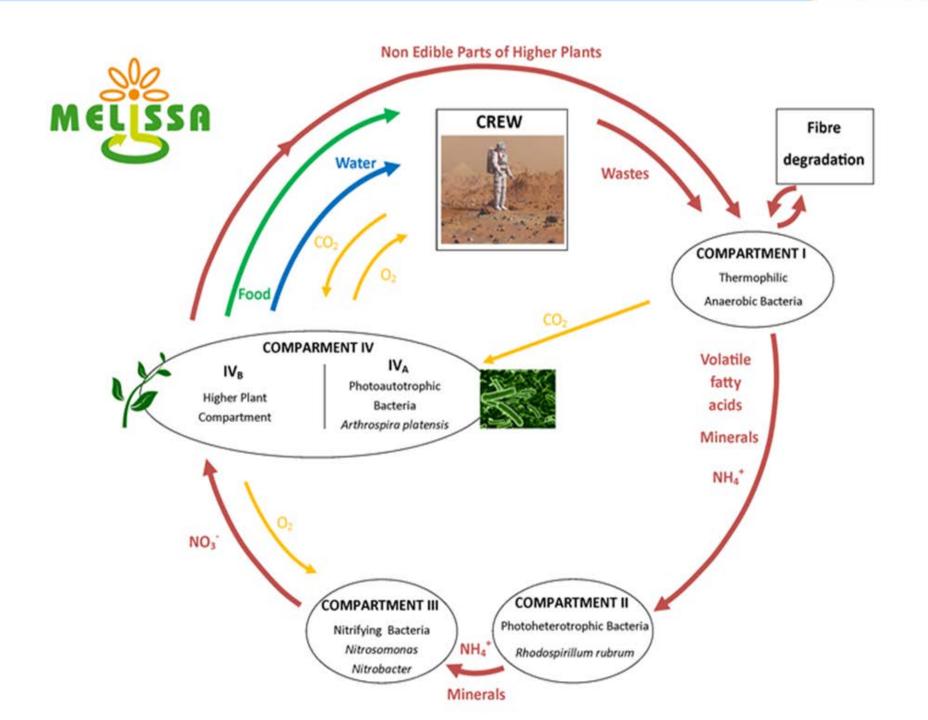
PARTIE 4 L'application dans le spatial.

« Les micro algues en soutien logistique des missions spatiales »

Des micro algues ...dans l'espace

Humain: $\pm 1 \text{Kg CO}_2 / \text{jours}$

CO₂ N-CO(NH2), P-PO4,



+ alimentation

Des micro algues ...dans l'espace

Pub!

Des micro algues ...dans l'espace

Merci pour votre attention

Remerciements à:

Monsieur le président
Madame la vice-président
Monsieur André Clerc

Jean Pierre Bellayer Marie Brunet « Mon contact »

Les membres organisateurs de l'association LUT.

Monsieur le maire de Lattes pour son soutien à LUT.

